Category Archives: Example

Appropriate Mappings

Donating.vs.Death-Graph.0

Vox Article on viral memes and charitable giving

First, a disclaimer. This is not a post about the actual issues this article raises; just about the presentation of those claims. The image from the article has appeared in numerous places and been referenced by a number of news sources, as well as appearing in my Facebook and twitter feeds.

And it’s a bad image.

One minor issue is that it is hard to work out which circle relates to which disease, as the name of the disease only appears on the legend, so you are constantly moving your eyes from grey dot on left to the legend, to the grey dot on the right. Hard to make much sense. The fact that the legend doesn’t seem to have any order to it doesn’t help either. If this were 20 diseases instead of eight, the chart would be doomed!

Kudos for picking appropriate colors though. It helps that they used a natural mapping (pink <–> breast cancer; red <–> AIDS) that might help a bit.

The more worrying issue is that it makes a classic distortion mistake; look at the right side and rapidly answer the question, using just the images, not the text: “How many more deaths are there due to the purple disease than the blue disease?” 

Using the image as a guide, your answer is likely to be in the range 10 to 20 times as man, because the ratio of the areas is about that amount. When you look at the text, though, it’s actually only about four times. The numbers are not encoding the area, which is what we see, but they are encoding the radius (or diameter) which we do not immediately perceive.

The result is a sensationalist chart. It takes a real difference, but sensationalizes it by exaggerating the difference dramatically. If you want to use circles, map the variable of interest to AREA, not RADIUS. It fits our perceptions much more truthfully. It’s not actually perfect; we tend to see small circles as larger than they really are; but it’s much, much better).

So, here’s a reworking:

WhereWeDonate Vs. Diseases That Kill

I tried to keep close to the original color mappings, as they are pretty good, but have used width to encode the variable of interest, keeping the height of the rectangle fixed. I also labeled the items on both sides so we can see much more easily that heart disease kills about 4x as many people as Chronic Obstructive Pulmonary Disease. 

I also added some links between the two disease rankings to help visually link the two and aid navigation. The result is, I believe, not only more truthful, but easier to use. In short, it works.

Visualizing Tennis

I’m a member of the American Statistical Association’s “Statistics in Sport” section (http://www.amstat.org/sections/sis/) and I’m also British by birth, so Andy Murray’s success at Wimbledon this year was interesting to me for two reasons. I took a look at some of the data on Murray (collected by IBM’s SlamTracker initiative — http://2013.usopen.org/en_US/slamtracker/ ) with a view to doing a little visual analysis, so now I have another reason to be interested …

I found some data on his performance over a few years leading up to Wimbledon 2013 and wanted to look at trends. Now usually I prefer to create several linked visualizations and look at them together, but for this data I found that several of the stats I was interested in worked nicely when plotted in the same system. Here’s what I came up with:

Image

Read the rest of this entry

Wikipedia Recent Changes

Wikipedia Recent Changes Map shows a good example is a good, clean, simple implementation that addresses the question:

“How is Wikipedia being Edited right now?” 

Some of the features of this visualization that work:

  • Filtered data — the potential data size is huge, and grows as we wait, so the display only shows the most recent events, both on the map and the list below it
  • Multiple linked views — data is shown geographically on the world map, and as a list of events below. This is preferable than trying to have one combined view as each view supports a different set of tasks, and combining them would complicate those tasks (WHERE are the changes coming from? WHAT is being changed?)
  • Not using graphics — the report on what has changed is a simple scrolling text view; since the dat is textual, and it is ordered, a simple list of text makes sense.
  • Different fade-out rates — Using the color for the country to show the most recent changes, and then fading that out in synch with the text description, focuses attention on changes very well. Leaving the dots behind for the changes allows us to keep a longer-term trend in mind.

As a map geek, I might prefer a different projection for the whole earth map; maybe WinkelTripel?

Chord Display (Music)

ITunes Music with a RAVE Chord visualization

ITunes Music with a RAVE Chord visualization

I took the data from my last post, aggregated up some fields and made a Chord Diagram for it, using RAVE. I was lazy and didn’t do a stellar job on rolling up years, so the year indicated is actually the center of a 4-year span — so 2007 is actually [2005.5, 2009.5] which is a little odd.

No big insights here — podcasts are all recent; alternative music is mostly recent too (Eels and Killers are artists with a large number of songs in my library). Interesting that I didn’t buy a lot of music form around 1999 …

I thought there were more packages that could do chord visualizations, but was only able to find some D3 examples.