Blog Archives

Visualizing Tennis

I’m a member of the American Statistical Association’s “Statistics in Sport” section (http://www.amstat.org/sections/sis/) and I’m also British by birth, so Andy Murray’s success at Wimbledon this year was interesting to me for two reasons. I took a look at some of the data on Murray (collected by IBM’s SlamTracker initiative — http://2013.usopen.org/en_US/slamtracker/ ) with a view to doing a little visual analysis, so now I have another reason to be interested …

I found some data on his performance over a few years leading up to Wimbledon 2013 and wanted to look at trends. Now usually I prefer to create several linked visualizations and look at them together, but for this data I found that several of the stats I was interested in worked nicely when plotted in the same system. Here’s what I came up with:

Image

Read the rest of this entry

Vega: A New Grammar-Based Specification for Visualizations

I’m a big fan of using languages for visualization rather than canned chart types. I’ve been working with the Grammar of Graphics approach for a number of years within SPSS and now IBM, and my book “Visualizing Time” is composed 95% of Grammar-based visualizations. It’s pretty safe to say it’s my preferred approach.

Protovis (the forerunner of D3, to a great extent) was built on Grammar approach; Bostock and Heer’s 2009 article (on Heer’s site at http://hci.stanford.edu/jheer/files/2009-Protovis-InfoVis.pdf) gives a very good statement of the benefits of the Grammar-based approach as opposed to the “Chart Type” approach:

The main drawback of [the chart type] approach is that it requires a small, closed system. If the desired chart type is not supported, or the desired visual parameter is not exposed in the interface, no recourse is available to the user and either the visualization design must be compromised or another tool adopted. Given the high cost of switching tools, and the iterative nature of visualization design, frequent compromise is likely.

Read the rest of this entry

From the Vaults: Maps are Just Another Element

For the Grammar of Graphics language-based approach to visualization, and therefore in the RAVE visualization system, maps are simply another element that can be used within the grammatical formulation.

Although most people consider a map a very different entity from a bar chart, all that really differs between a bar chart and a map of areas like the one included here is that instead of representing a row of data by a bar, we use a polygon (or set of polygons) on a map. Otherwise their properties ought to be the same — we can apply color, patterns, labels, transparency. We can set a summary statistic when there are multiple values for each polygon to reflect min, max, mean, median, range, or any of the regular sets of items. We can flip, transpose and panel the charts. Essentially, from the grammatical point of view, if you can do it to a bar chart, you can do it to a map. The only limitation is that whereas the sizes of the bars can be set or determined by data, the map polygons cannot, so setting sizes on the map polygons has no effect.

US Chorlopleth

Orthogonality is also important — so we can say we want a point element instead of a polygon, as in the above where we’ve added a second element to a RAVE US Map conveying different data as well as being a good place to put labels